Citation: | 张习勇, 祁应红, 高光普, 李玉娟. A New Method for Evaluation of Hamming Weight and Nonlinearity of Rotation-symmetric Boolean Functions[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2691-2696. doi: 10.11999/JEIT 150164 |
Pieprzyk J and Qu C X. Fast hashing and rotation-symmetric functions[J]. Journal of Universal Computer Science, 1999, 5(1): 20-31.
|
Cusick T W and P. Fast evaluation, weights and nonlinearity of rotation-symmetric functions[J]. Discrete Mathematics, 2002, 258(1): 289-301.
|
Ciungu L C. Cryptographic Boolean functions: Thus-Morse sequences, weight and nonlinearity[D]. [Ph.D. dissertation], University at Buffalo, 2010.
|
Zhang X, Guo H, Feng R, et al.. Proof of a conjecture about rotation symmetric functions[J]. Discrete Mathematics, 2011, 311(14): 1281-1289.
|
Wang B, Zhang X, and Chen W. The hamming weight and nonlinearity of a type of rotation symmetric Boolean function [J]. Acta Mathematica Sinica, Chinese Series, 2012, 55(4): 613-626.
|
Cusick T W. Finding Hamming weights without looking at truth tables[J]. Cryptography and Communications, 2013, 5(1): 7-18.
|
Brown A and Cusick T W. Equivalence classes for cubic rotation symmetric functions[J]. Cryptography and Communications, 2013, 5(2): 85-118.
|
KV L, Sethumadhavan M, and Cusick T W. Counting rotation symmetric functions using Polyas theorem[J]. Discrete Applied Mathematics, 2014, 169: 162-167.
|
Cusick T W and Cheon Y. Affine equivalence for cubic rotation symmetric Boolean functions with n=pq variables[J]. Discrete Mathematics, 2014, 327: 51-61.
|
Cusick T W and Cheon Y. Affine equivalence of quartic homogeneous rotation symmetric Boolean functions[J]. Information Sciences, 2014, 259: 192-211.
|
Kim H, Park S M, and Hahn S G. On the weight and nonlinearity of homogeneous rotation symmetric Boolean functions of degree 2[J]. Discrete Applied Mathematics, 2009, 157(2): 428-432.
|
Liu H. On the weight and nonlinearity of quadratic rotation symmetric function with two MRS functions[J]. General Mathematics Notes, 2013, 16(1): 12-19.
|
P and Maitra S. Rotation symmetric Boolean functions-count and cryptographic properties[J]. Discrete Applied Mathematics, 2008, 156(10): 1567-1580.
|
Hou X D. Explicit evaluation of certain exponential sums of binary quadratic functions[J]. Finite Fields and Their Applications, 2007, 13(4): 843-868.
|
Weinberger M J and Lempel A. Factorization of symmetric circulant matrices in finite fields[J]. Discrete Applied Mathematics, 1990, 28(3): 271-285.
|
Zhang X, Cao X, and Feng R. A method of evaluation of exponential sum of binary quadratic functions[J]. Finite Fields and Their Applications, 2012, 18(6): 1089-1103.
|