Advanced Search
Volume 37 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
张习勇, 祁应红, 高光普, 李玉娟. A New Method for Evaluation of Hamming Weight and Nonlinearity of Rotation-symmetric Boolean Functions[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2691-2696. doi: 10.11999/JEIT 150164
Citation: 张习勇, 祁应红, 高光普, 李玉娟. A New Method for Evaluation of Hamming Weight and Nonlinearity of Rotation-symmetric Boolean Functions[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2691-2696. doi: 10.11999/JEIT 150164

A New Method for Evaluation of Hamming Weight and Nonlinearity of Rotation-symmetric Boolean Functions

doi: 10.11999/JEIT 150164
Funds:

The National Natural Science Foundation of China (61402522, 60803154, 61572027)

  • Received Date: 2015-01-29
  • Rev Recd Date: 2015-06-11
  • Publish Date: 2015-11-19
  • Rotation-symmetric Boolean function is a class of Boolean functions with good cryptographic properties, and researches on its weight and nonlinearity cryptographic properties have good theoretical value. Different from the conventional calculation method, in this paper, these problems are converted to the evaluation of exponential sum on finite fields with a specific normal basis. Some new results about the weight and nonlinearity of some rotation-symmetric Boolean functions of degree 2 with4 ?? n and n=2s are obtained. Using the proposed method, the weight and nonlinearity of almost all Rotation-symmetric Boolean functions of degree 2 can be evaluated. This new method is also interesting for studies on the other Boolean functions.
  • loading
  • Pieprzyk J and Qu C X. Fast hashing and rotation-symmetric functions[J]. Journal of Universal Computer Science, 1999, 5(1): 20-31.
    Cusick T W and P. Fast evaluation, weights and nonlinearity of rotation-symmetric functions[J]. Discrete Mathematics, 2002, 258(1): 289-301.
    Ciungu L C. Cryptographic Boolean functions: Thus-Morse sequences, weight and nonlinearity[D]. [Ph.D. dissertation], University at Buffalo, 2010.
    Zhang X, Guo H, Feng R, et al.. Proof of a conjecture about rotation symmetric functions[J]. Discrete Mathematics, 2011, 311(14): 1281-1289.
    Wang B, Zhang X, and Chen W. The hamming weight and nonlinearity of a type of rotation symmetric Boolean function [J]. Acta Mathematica Sinica, Chinese Series, 2012, 55(4): 613-626.
    Cusick T W. Finding Hamming weights without looking at truth tables[J]. Cryptography and Communications, 2013, 5(1): 7-18.
    Brown A and Cusick T W. Equivalence classes for cubic rotation symmetric functions[J]. Cryptography and Communications, 2013, 5(2): 85-118.
    KV L, Sethumadhavan M, and Cusick T W. Counting rotation symmetric functions using Polyas theorem[J]. Discrete Applied Mathematics, 2014, 169: 162-167.
    Cusick T W and Cheon Y. Affine equivalence for cubic rotation symmetric Boolean functions with n=pq variables[J]. Discrete Mathematics, 2014, 327: 51-61.
    Cusick T W and Cheon Y. Affine equivalence of quartic homogeneous rotation symmetric Boolean functions[J]. Information Sciences, 2014, 259: 192-211.
    Kim H, Park S M, and Hahn S G. On the weight and nonlinearity of homogeneous rotation symmetric Boolean functions of degree 2[J]. Discrete Applied Mathematics, 2009, 157(2): 428-432.
    Liu H. On the weight and nonlinearity of quadratic rotation symmetric function with two MRS functions[J]. General Mathematics Notes, 2013, 16(1): 12-19.
    P and Maitra S. Rotation symmetric Boolean functions-count and cryptographic properties[J]. Discrete Applied Mathematics, 2008, 156(10): 1567-1580.
    Hou X D. Explicit evaluation of certain exponential sums of binary quadratic functions[J]. Finite Fields and Their Applications, 2007, 13(4): 843-868.
    Weinberger M J and Lempel A. Factorization of symmetric circulant matrices in finite fields[J]. Discrete Applied Mathematics, 1990, 28(3): 271-285.
    Zhang X, Cao X, and Feng R. A method of evaluation of exponential sum of binary quadratic functions[J]. Finite Fields and Their Applications, 2012, 18(6): 1089-1103.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1471) PDF downloads(596) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return